Sleep
The amount of sleep you require seems to be related to your ability to get into and process through five REM cycles per night. The more high beta, the less beta, or the more alpha intrusions, etc. you have, the harder it is to complete this, so the brain doesn’t get to do its psychological restoration and long-term memory storage and it doesn’t feel rested and ready to get up.
Stages of Sleep
Stage 0
When we are awake, the brain should be producing alpha and beta frequencies. That would be stage 0 sleep.
Stage 1
When we get ready to sleep, we move into Stage 1 sleep: eyes-closed, relaxing, ready to fall asleep. We see the EEG slow down from alpha and beta to theta frequencies—alpha drops and theta rises. What characterizes the changes from Stage 1 sleep (alpha down/theta up–as in alpha theta) and stage 2 sleep is bursts of 12-15 Hz “sleep spindles” in the sensory-motor cortex and K-complexes.
Stage 2
Stage 2 sleep is when you actually go unconscious. In the EEG we see what are called “sleep spindles” (bursts of SMR) and K-complexes, both of which are involved with relaxing and calming the body.
Stage 3
After some time in a relatively light Stage 2 theta sleep, we drift down into Stage 3, where the theta slows down into delta and we enter a deep and profound sleep, much like a coma. This is when physical restoration occurs.
Stage 4
Five-six times a night most brains rise from this deep state into Stage 4, or REM, sleep, where we produce rapid eye movements and dream–the psychologically-restorative sleep. In REM, the EEG produces lots of alpha a beta, such that it’s often very difficult to tell from the EEG whether the client is awake or asleep.
From REM, the brain returns to Stage2 and starts the process again.
Delta Sleep
As to the delta sleep states, the numbering systems differ, but there are generally two delta states described. The first is often Level 3, which is theta dropping, delta rising. The second goes away with aging–normally in the early 20s or earlier. It generally occurs only in the first couple sleep cycles of the night in children and adolescents, and it disappears (except in those who do heavy physical exercise) quite early in life. Both delta sleeps are related to physical restoration; the second seems to be related to release of human growth hormone and more significant repairs (related to growing bodies).
Training Sleep
The best thing to do for sleep is an assessment to see what patterns are related to whatever you want to change, then train those. In some sense you could say that, as all neurofeedback is peak performance training (since it tends to improve function in multiple areas), all brain training should have a positive effect on sleep.
There are several forms of sleep difficulties that training can focus on and resolve early:
- Sleep-Onset Insomnia (not falling asleep)
- Terminal Insomnia (waking up and not being able to sleep again)
- Restless sleep (moving around in sleep; muscle tension)
- Interrupted sleep (waking multiple times during the night)
- Non-restorative sleep (cannot wake up)
Sleep Onset Insomnia
Sleep onset problems result in a person lying in bed unable to fall asleep–or staying up till all hours until he is so exhausted that he falls asleep. People with either inability to produce SMR (sleep spindles) when they lie down to go to sleep, or some anxious people with hot right-rear quadrants will have sleep-onset insomnia and have difficulty falling asleep, though they often sleep well when they do go to sleep and awaken rested.
This is generally related to one of two patterns:
1. Sleep onset problems are often related to levels of SMR at C4 below 10%. Low levels of SMR (12-15Hz) in the eyes-open EEG at C4 or Cz usually indicate a brain that is unable to move from stage 1 (eyes closed, relaxed, ready to go to sleep) to stage 2 (asleep). Sleep spindles and K-complexes both relate to sustained relaxation of the muscles, which appears to be an important element in this transition. People with low SMR also often show lots of movement in bed when sleeping, restless leg, bruxism, etc. Training to reduce overall activity and increase SMR can be helpful (side note: SMR frequency in children may not be 12-15Hz, based on what the peak alpha frequency in the parietals/occipitals is).
2. A “hot” right-posterior quadrant (P4, T6, O2) with low levels of delta/theta relative to the amount of beta/high-beta. When beta levels are higher on the right than left in homologous sites and/or higher in the back than the front, this often relates to anxiety and (when alpha is low) sleep-onset insomnia. I often train 2 channels at P4/A2 and Oz/A2, inhibiting 19-38 or 23-38 and rewarding 6-13 or 9-13 depending on how much 6-8 Hz activity is attenuated. Movement is not so much an issue here as anxiety. For those who have a beta problem, the SMR training is not likely to be successful.
Terminal Insomnia
Terminal Insomnia is usually related to hot right-posterior quadrant of the brain. People who have fast right-rear quadrants tend to fall asleep easily, then awaken after several hours and not be able to return to sleep after perhaps one REM cycle, so they often don’t feel rested.
Look at beta and high beta levels at P4, O2, Oz or T6 relative to those levels in the left frontal and right frontal areas.
Alpha uptraining in the parietal sites or beta down (if there’s already enough alpha) can help for anxious clients who fall asleep okay then wake up and can’t fall asleep again. It is common for sleep to improve with increased alpha PF.
Restless Sleep
Cz or C4 SMR up (I like training it up as a percentage of the EEG) training could be very helpful for restless sleep/restless leg issues. This would be especially true if there are sleep onset issues as well.
Interrupted Sleep
I usually see multiple awakenings during the night with high levels of beta/high-beta with eyes closed. The brain moves down through stages 1 and 2 into stage 3 (delta), then starts up into REM, where it is producing an EEG almost exactly like a full waking EEG. However, excessive beta can pop the brain out of the sleep state. Many clients can return to sleep fairly quickly–or barely recall that they woke up–but they don’t get the psychologically restorative benefit of full REM cycles and are often tired. They may or may not remember dreams.
Often beta reversals front/back (more beta in P and O sites than in the F sites) result in waking up sometime after initial sleep onset and then being unable to return to sleep due to rumination, worry, etc. If there is sufficient alpha, you can train down beta in the back; otherwise, train up alpha.
Non-Restorative Sleep
Often people who sleep heavily all night and don’t awaken rested have difficulty producing fast wave activity, so they don’t get into the REM cycle–they stay all night in delta (coma) sleep, so they never get psychologically restored. This can also happen with people who have excessive fast activity—especially high beta–when awake. They experience awakening multiple times during the night, pretty much every time they try to go up into REM.
This can also be related to extremely slow brain activity with little capacity to produce beta. The client goes down into stage 3 sleep and is unable to cycle up into REM. Some clients experience that they wake up multiple times during the night and fall back to sleep quickly, because they have a bit more beta. Bed-wetting is often related to this pattern. Speeding up the brain often resolves these issues.
Robust ability to shift into beta speeds seems to help increase REM sleep. Clients who have EEG’s dominated by slow frequencies during waking states often sleep heavily but not restfully, because they either can’t get into or stay in REM (which has lots of fast-wave activity in it).
Sleep Intrusions
Alpha intrusions, or alpha-delta sleep, mean that alpha—often slow alpha—is appearing in bursts during what is supposed to be delta sleep, the deepest state of unconsciousness. Delta sleep is supposed to be physically restorative, and with alpha intrusions, it is not. It sometimes also intrudes into REM, so the client doesn’t get enough REM sleep and wakes always feeling tired from not enough psychologically restorative sleep.
Alpha intrusions can result in reduced release of human growth hormone in younger clients and eventually in chronic fatigue/chronic pain/fibromyalgia symptoms in older clients. It is most commonly seen in those cases where emotional drive material is being wrapped up in alpha during waking, usually a predictor that the client will somaticize the emotional issues (which he/she generally doesn’t admit) and begin to have physical pain, fibromyalgia, chronic pain or fatigue.
The pattern appears in the TQ8 as alpha (especially slow) in the frontal area of the head with closed eyes (may continue with open eyes too). There will be lots of red in the maps of 9-10 Hz in front.
Train down the alpha. Train it down with eyes closed. Especially focus on training down the slow alpha. You might also try training alpha down and beta up, especially on the left and toward the front. Anything you can do to get the brain to use alpha more appropriately should have a positive effect on sleep problems (and a bunch of other things the person may not be complaining of).
Dreams
Greater awareness of dreams can indicate more REM, but it can also suggest that the client is waking up partially (which may indicate a shortage of beta-producing capacity) early in each dream, which would be a good way to remember them.
One thing to be aware of is that many people with lots of slow activity rarely do dream, since they have a hard time getting into or staying in the REM state, so they don’t get the psychological restoration that REM seems to bring. As you improve the brain’s ability to produce faster states and sustain them, you are more likely to dream (and especially in the beginning to remember them).
Sleep Deprivation
When someone is severely sleep deprived, they will never make up all the delta sleep (physical restoration) they have lost, but the brain will make up all the REM (psychologically restorative sleep) as quickly as possible. So when a client sleeps and immediately skips through stages 2 and 3 into REM, that’s a pretty good indication of severe sleep deprivation.
In delta sleep, which one is unlikely to enter in an office with feedback being produced, the brain is completely shut off from environmental information. Not so in REM. Anyone who has ever dreamed and integrated some external sound (dog barking, alarm going off, etc.) into a dream can attest to that. So the feedback gets through.
Sleep-deprived brains try to make up their lost REM cycles as quickly as possible. If a client appears to fall asleep, allow it and keep the training going. When the feedback stops, the person will come up by herself. Eventually, the person will be able to train awake.
Unusual Patterns
Very high alpha peak frequencies—at or above 11 Hz—are a much rarer source of sleep onset problems. It is worth trying to train that down toward 10 to see if it helps.
Seniors and Sleep. I think for many older adults the problem of sleep is not so much its duration as its depth. They tend to wake frequently, which is consistent with reductions in fast wave production: each time the brain tries to go into REM, it can’t sustain the beta and the client awakens (very much like slow-wave ADD kids often do). If the brain maintains its speed, I don’t believe this is a built-in part of aging.
Narcolepsy
Narcoleptics get waking and sleep pretty confused in their brains and they suffer from sleep deprivation. In dreaming, our brains put us in a state called cataplexy, a kind of complete loss of muscle tone which keeps us from actually getting up and acting out our dreams. Narcolepsy also often involves theta hallucinations like nightmares, sleep paralysis and cataplexy during the waking state. These are often triggered by strong emotions.
In the EEG, the studies I’ve seen have shown (in eyes-closed readings, not necessarily eyes-open) theta and low-alpha amplitudes are dominant and 10-12 Hz alpha and beta amplitudes are decreased, which is kind of what you would expect. A very common indicator is that the client will enter REM/dream sleep almost immediately upon sleeping–very much like anyone who is sleep deprived and trying to make up the lost “psychologically-restorative” REM. They do enter REM, and have about as many periods during a night as normal sleepers, but where most of us increase the length of REM periods as the night goes on, they remain about the same for narcoleptics.
Neurofeedback can be helpful in speeding up brain function, but the sleep disturbances which are the main basis of narcolepsy haven’t responded as well–at least in cases I’ve worked with or consulted on. Two I worked with had lots of delta spiking, so you may have some success reducing variance in delta and/or theta (2-5 Hz).